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Abstract
The goal of street‐to‐aerial cross‐view image geo‐localization is to determine the location
of the query street‐view image by retrieving the aerial‐view image from the same place.
The drastic viewpoint and appearance gap between the aerial‐view and the street‐view
images brings a huge challenge against this task. In this paper, we propose a novel
multiscale attention encoder to capture the multiscale contextual information of the
aerial/street‐view images. To bridge the domain gap between these two view images, we
first use an inverse polar transform to make the street‐view images approximately aligned
with the aerial‐view images. Then, the explored multiscale attention encoder is applied to
convert the image into feature representation with the guidance of the learnt multiscale
information. Finally, we propose a novel global mining strategy to enable the network to
pay more attention to hard negative exemplars. Experiments on standard benchmark
datasets show that our approach obtains 81.39% top‐1 recall rate on the CVUSA dataset
and 71.52% on the CVACT dataset, achieving the state‐of‐the‐art performance and
outperforming most of the existing methods significantly.
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1 | INTRODUCTION

Image‐based geo‐localization has attracted increasingly
attention and obtained constantly progress due to its great
potential in the fields of autonomous driving [1, 2], robot
navigation [3–5], as well as AR/VR [6]. Traditional methods
aim to determine the location by matching the query street‐
view image with the geo‐tagged street‐view images in a
reference database [7–13]. Relja et al. [7] successfully extended
the VLAD algorithm [14] into an end‐to‐end trained network
to exploit a NetVLAD model, which extracts rotation and
scale invariant features to ensure that the model is not
affected when there is a huge rotation and scale change be-
tween the query street‐view image and the target street‐view
image. Hausler et al. [13] further improved NetVLAD by
merging global descriptors and local descriptors into it to
form a Patch‐VLAD model, which roughly sorts the candi-
date street‐view images in the database according to the query
street‐view image with the help of the global descriptors, and

then uses the local descriptors to retrieve the final matching
street‐view image. Cao et al. [12] incorporated global and
local features into a single model to form a unified feature
extraction framework, which extracts more robust descriptors
for image matching from street‐view to street‐view. However,
the above methods all have a fatal problem: the database that
contains the street‐view images is difficult to densely cover a
large area.

Thanks to the remote sensing satellite, a great number of
satellite images with geo‐tags have been collected. Conse-
quently, matching street‐view image to aerial‐view image has
gradually become the mainstream method, see Figure 1.
However, the cross‐view image‐based geo‐localization is very
challenging because of the drastic domain gap, orientation
uncertainty, and different scales with different viewpoints,
leading to it is impossible to use the traditional methods like
SIFT [15] and HOG [16] to solve this task well.

Recently, deep learning has achieved great success in the
field of computer vision [17–20], so most of the current
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works [21–26] proposed to use the convolutional neural
network (CNN) to obtain robust deep feature representation
between the two‐view images for matching. A key measure is
to find better image feature embeddings which can adaptively
pull the matching image pairs closer while push the
unmatching pairs far away. Encouraged by the recent success
of using CNNs to learn high‐level features, Workman et al.
[27] introduced deep features into cross‐view geo‐localization,
and released a massive dataset called CVUSA which contains
tens of thousands pairs of cross‐view images. Hu et al. [22]
proposed a model named CVM‐Nets, which integrated the
NetVLAD into the Siamese CNN, to get robust representa-
tion of images. Inspired by hard exemplar mining [22], Cai
et al. [21] explored a hard exemplar mining strategy to
automatically allocate weights to triplets for cross‐view image
matching. To align the space layout between the street‐view
image and the aerial‐view image, Regmi and Shah [28]
introduced a GAN to convert the street‐view image into the
aerial‐view image. Although the effectiveness of GAN is
investigated in Ref. [28], it can only produce synthetic street‐
view images for a database which it trained on, and cannot
produce the generic street‐view images which are deviated
from the training images to enhance the generalisation ca-
pacity. In contrast, by mining the geometric relationship be-
tween the two view images, we exploit an inverse polar
transform to reduce the domain gap between them. Specif-
ically, our approach can approximately convert any street‐
view image into an aerial‐view image. The contributions of
this paper are summarised as follows:

� We explore an inverse polar transform method to conduct a
rough geometric alignment between the two view images,
which is useful to reduce the domain difference and make
the network easier to learn discriminative features for the
two views.

� We propose a multi‐scale attention encoder, and integrate it
into a basic Siamese network to reduce the impact of the
distortion caused by the inverse polar transform.

� We exploit a global mining strategy to discover the global
hard negative samples and enable the network to focus on
hard exemplars to improve the performance.

2 | RELATED WORK

There are mainly two types of related work on geo‐localization:
(1) Approaches based on image matching techniques. (2) Ap-
proaches that divide the Earth's surface into a large number of
grids, and then calculate the probability of the image falling
into the grid to achieve locating.

2.1 | Image matching techniques

Due to the significant viewpoint difference between street‐view
and aerial‐view images, traditional hand‐crafted feature
methods cannot project the two view images into a unified
feature space, which leads to a bottleneck in image matching
performance [29–33]. Encouraged by the success of CNNs in
computer vision, Workman and Jacobs [34] first transferred the
pre‐trained AlexNet on the Imagenet [35] and Places [36]
datasets to learn deep features for cross‐view geo‐localization,
and many experiments have been conducted to verify that deep
features are far superior to hand‐crafted features. Lin et al. [37]
introduced the Siamese CNNs into cross‐view geo‐localization,
and captured the deep features of street‐view images and aerial‐
view images separately through the two‐branch networks. They
used an improved contrast loss to train two branches of CNN
to locate cross‐view images. A large number of experiments
proved the descriptors extracted by the neural network are
better than those hand‐crafted descriptors. Vo and Hays [24]
released a massive dataset called VH and tested a series of
existing methods on it. To learn scale‐invariant and rotation‐
invariant features, Hu et al. [22] integrated NetVLAD into a
two branch CNN for ground‐to‐aerial geo‐localization. Cai
et al. [21] introduced an attention module to re‐weight the

F I GURE 1 An example of street‐to‐aerial image geo‐localization. The location of the query street‐view image is determined by retrieving the geo‐tagged
aerial image from the same place in the reference database
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spatial and channel features to capture more robust image
representations.

Considering that the drastic viewpoint differences between
the street‐view and aerial‐view images is a key factor that limits
the matching performance, Shi et al. [26] used feature transport
to convert street‐view features into aerial‐view features, which
is helpful to eliminate the difference between the two‐view
images in the feature domain. Regmi and Shah transferred
the ground images into air‐view images by a generative
adversarial model, and then concatenated the representations
of the street‐view and synthesised aerial‐view images to form
the global representation for matching. Shi et al. [25] exploited
a spatial‐aware feature aggregation module to conduct feature
ensemble. Since humans often take the orientation information
into consideration when determining their position in daily life,
Liu et al. [23] explicitly combined the orientation and RGB
image, and then fed the fusion information of the two into the
network. To further estimate the orientation information, Shi
et al. [38] aligned the cross‐view orientation information by
using the DSM module during localization. Wang et al. [39]
used a square ring partition method and fused these partition
features as a global representation to improve the perfor-
mance. Previous experiments have proved that preliminary
alignment of the domain and orientation information of the
street‐view and aerial‐view images can reduce the difficulty of
network learning.

Except the huge viewpoint difference between these two
views of images, to accurately locate the image spatial position,
there is usually only one aerial‐view image in the database used
to exactly match the street‐view image in the cross‐view geo‐
localization task. It means that all other aerial‐view images in
the dataset will be treated as negative samples. As a result, there
is a huge imbalance in the number of positive and negative
samples during training. Zhu et al. [40] designed a novel bino-
mial loss which applied anchor points to gather positive samples
and push negative samples away from each other. Schroff et al.
[41] tried to use the online hard negative mining to make further
breakthroughs. Although this method has a certain effect on
improving the accuracy, it is difficult to improve the network
accuracy significantly because the online hard negative mining
cannot consider the global hard negative samples.

Since global features are usually affected by noisy data
during the matching process, more and more scholars are
beginning to pay attention to the part‐based representation
learning. Li et al. [42] divided the image information into three
parts: head‐shoulder, upper body, and lower body, and then
utilised a Spatial Transformer Network (STN) to integrate
these three local information. A strong part‐based Convolu-
tional Baseline (PCB) [43] was presented to extract high‐level
features by developing a uniform partition strategy.

2.2 | Classification methods based on deep
learning

Classification methods based on deep learning have achieved
great success in different fields [44–47]. Most of the previous

image‐based geo‐localization approaches require a large num-
ber of street‐view images to cover the area of interest, which
limits the application of these methods. To address geo‐
localization at planet‐scale without any restrictions, Weyand
et al. [48] introduced a PlaNet, which divided the Earth's
surface into a large number of grids, and used these grids as
category labels to locate the image. Muller‐Budack et al. [49]
introduced hierarchical knowledge given by the predictions at
each scale based on the former method, and experimental
results demonstrated that incorporating hierarchical knowledge
in the convolutional neural network is effective. Recently, many
works [46, 50–52] tried to introduce attention mechanisms and
multi‐scale information into the network to improve the per-
formance of CNN on large‐scale classification datasets. Woo
et al. [50] combined the channel attention module with the
spatial attention module to form a lightweight module, which
achieved state‐of‐the‐art performance on the datasets of
ImageNet‐1K, MS COCO detection, and VOC 2007 detection.
Wang et al. [46] integrated residual connections in each
attention module to train very deep networks, where the per-
formance of classification was boosted on both CIFAR‐10 and
CIFAR‐100. He et al. [51] proposed the spatial pyramid
pooling layer to fuse the representations of different scales to
obtain a robust global representation, which improves the
performance of CNN‐based image classification methods. Lin
et al. [52] developed a top‐down architecture with horizontal
connections for constructing high‐level semantic feature maps
of all scales.

3 | PROPOSED METHODOLOGY

In this section, we provide an overview of our approach. Our
method consists of three main components, that is, Inverse
Polar Transform (IPT) (Section 3.2), Multi‐scale Attention
Encoder (MSAE) (Section 3.3), and Global Mining Strategy
(GMS) (Section 3.4).

3.1 | Overview

Given a street‐view query image, the matching aerial‐view
image is obtained by comparing the pair‐wise Euclidean dis-
tance between their representation vectors. Since there are
large appearance differences between the two view images, we
try to reduce the domain gap between the viewpoints at first.
Then, we design a Siamese network, which contains two in-
dependent CNN branches to extract the features of the street‐
view images and the aerial‐view images respectively, to obtain
discriminative global feature representations. Secondly, there is
also a hug domain difference between these two kinds of view
images, we make the two branch extractors of the Siamese
network without sharing weights. Furthermore, to obtain more
robust representation vectors, we introduce a multi‐scale
attention encoder to encode the extracted deep features. Due
to our attention mechanism, the network can ignore irrelevant
information.
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Finally, to improve the network training process, we pro-
pose a global mining strategy to find the global hard negative
exemplars. This strategy is useful to further boost the retrieval
performance. An overview of our method is shown in Figure 2.

3.2 | Inverse polar transform

As we observed, there are two very important geometric
correlations between cross‐view images: (1) Objects on the
same horizontal line of street‐view images have the same
depth, which means the horizontal line of street‐view images
corresponds to the concentric circle of aerial‐view images. (2)
On the vertical line of street‐view images, the depth of the
object increases followed with the increasing of the y coordi-
nate, which corresponds to the radial ray on aerial‐view images.
It is difficult for the network to directly learn the mapping
from the street‐view images to the aerial‐view images, there-
fore we make use of inverse polar transform to roughly
eliminate the domain gap between these two view images.
Therefore, the inverse‐polar transform between the original
street‐view image points ðxsi; y

s
iÞ and the target transformed

street‐view image points ðxti; ytiÞ is defined as:
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Here, the size of the original aerial images is Ha �Wa, and
the size of the original street‐view images is Hs � Ws. We use
the geometric clue that the street‐view image is located at the
centre of the aerial‐view image, accordingly a one‐to‐one
mapping relationship between the original street‐view image
points ðxsi; y

s
iÞ and the synthetic air‐view image points ðxti; ytiÞ

is established.
By explicitly mining the geometric relationship between the

two‐view images, the domain differences between the cross‐

view images can be significantly reduced, as illustrated in
Figure 3. Although the neural network can theoretically learn
any geometric transformation relationship, in this work, we
first roughly align the domain information of the cross‐view
images, which can not only convert a complex cross‐view
matching task into a simple matching task, but also can
boost the performance of the network.

3.3 | Multi‐scale attention encoder

The inverse polar transform method can reduce the geomet-
rical difference between the street‐view image and the aerial‐
view image. However, since the transform still cannot regard
the scene depth information of the street‐view image, the
transformed images have obvious object deformation, thus the
geometrical difference problem cannot be clearly eliminated by
the function transformation. Noticeably, we propose a multi‐
scale attention encoder, which is helpful for the network to
focus on the region where the deformation of the object is
small and to ignore the region where the deformation of the
object is large. Moreover, since image matching requires an
one‐dimensional description vector, we use a fully connected
layer to project the captured deep features into a global
description vector as well. The proposed MSAE uses a light-
weight fully convolutional network to convert multi‐scale
features into the attention masks. The lightweight fully con-
volutional network captures the context information by using
convolution kernel, which is denoted as kp. To mine multi‐scale
information, a set of 3 � 3, 5 � 5, and 7 � 7 convolution
kernels are used to capture the feature space context infor-
mation at different scales. The expression is defined as:

s¼⋃
p
ðkpðdÞ þ cÞ p ∈ f3; 5; 7g ð3Þ

Here, ⋃
p
ð⋅Þ represents the channel connection operation,

d represents the input feature map, and kp(d) represents the
output of the pth group of convolution kernels, and c repre-
sents the bias constant.

F I GURE 2 The overview of proposed pipeline
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After obtaining the multi‐scale context information s, a set
of 1 � 1 convolution kernels, which are used to weight and
sum the information of each spatial position channel by
channel, to obtain an attention mask with a channel number of
1. Finally, we use up‐sampling to restore the size of the
attention mask to consistent with the size of the feature map,
and utilise the restored attention mask to re‐weight the feature.
The detailed architecture of our MSAE module is shown in
Figure 4.

3.4 | Global mining strategy

Due to the limitation of the batch size, the effect of the
negative samples within a batch to the loss is gradually tending

to 0, and the overall convergence speed of the model gradually
slows down. Reference [21] proposed an in‐batch re‐weighting
triplet loss, which gives more weight to hard negative exem-
plars and less weight to easy exemplars. Reference [22] mined
difficult negative exemplars in a batch for training, and found
that the difficult exemplar mining strategy can significantly
boost the performance. However, the above methods have
high requirement for hardware equipment, and are not appli-
cable when the batch size is small. This is because the hard
negative exemplars of a batch are difficult to represent the
global hard negative exemplars within small batch size. To
allow the network to consider the global hard negative exem-
plars as much as possible during the training process, we use
the feature queue to save the global descriptor vector that is
obtained from the aerial‐view image via the forward propa-
gation of the network. Specifically, to save the computation
resources, the queue is set to a fixed length, and only saves the
most difficult negative samples of the current batch for loss
calculation in subsequent batches. After the feature queue is
full, whenever there is a new hard negative exemplar comes to
the queue, the sample feature at the head of the queue will be
dequeued, so as to ensure the feature encoding in the queue is
consistent with the network parameter update. Our network
aims to learn feature embeddings to reduce the distance of
matched image pairs and push the unmatched image pairs
away. Denoting f(⋅) as a skeleton network with the multi‐scale
attention encoder, the loss function L of the entire network is
defined as follows:

L ¼ lnð1þ eαðdpos−dnegÞÞ ð4ÞF I GURE 3 Illustration of inverse polar transform, and geometric
correspondence between the synthetic and aerial images

F I GURE 4 Architecture details of the proposed MSAE module. Intermediate feature maps of the backbone are concatenated along with channel to form
multi‐scale features. Multi‐scale features are then input into a lightweight fully convolutional network to get the attention mask, where is the attention mask is
used to re‐weight the spatial information. MSAE, Multi‐scale Attention Encoder
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dpos ¼ kf ðIsÞ − f ðIaÞk
2
2 ð5Þ

dneg ¼ kf ðI sÞ − f ðI 0aÞk
2
2 ð6Þ

where Is is the street‐view image, Ia is the matched aerial‐view
image, I 0a is the unmatched aerial‐view image from the current
batch and the queue of GMS. We set α = 10 in this work
according to Ref. [22].

4 | EXPERIMENTS AND ANALYSIS

4.1 | Datasets

We do experiments on two benchmark datasets, that is
CVUSA [53] and CVACT [23]. CVUSA includes 35, 532 pairs
of street‐view and aerial‐view images for training, and 8884
pairs of images for testing. To be consistent with the former
methods, CVACT also provides the same division setting for
the training set and the testing set. In these two datasets, to
provide as accurate information as possible, all the street‐
view images are panoramic images and all the aerial‐view
images are high‐resolution images. It is worth noting that
the street and aerial view images in these two datasets are
captured at different times, which also brings great challenges
to this task. Figure 5 shows some samples from the two
datasets.

CVUSA In this dataset, the aerial‐view images are with
geographic coordinates. In addition, CVUSA also provides
semantic segmentation labels for the street‐view images. Since
our proposed method in this work does not rely on any other
additional information, this semantic segmentation labels are
not used.

CVACT is targeted for fine‐grain and city‐scale cross‐view
localization. Geo‐tagged street‐view panoramas and satellite
images in this dataset are mainly from the Canberra city.

4.2 | Evaluation metrics

For the cross‐view geo‐localization problem, we use the topk
recall as the evaluation metrics. For each query street‐view
image, if the aerial‐view image matched with it is among the
first k retrieval results, then it is believed that this retrieval
image is correct. Top 1% is a weakly constrained evaluation
metric. The existing works [21, 26, 28] have increased the top
1% to more than 95%, so the top 1% is no longer a good
indicator. The top‐1 accuracy is the ultimate problem that
needs to be solved in cross‐view geo‐localization, that is, given
a query image of the ground view, the only matching aerial‐
view image with geographic coordinates is found in the data-
base. Therefore, top‐1 has more practical application signifi-
cance than top 1%.

4.3 | Comparative results

In this section, we compare the performance of our algorithm
with the related prior methods [22, 23, 26, 28, 39, 54] on two
benchmark datasets [23, 53]. To ensure the fairness of the
comparison, we copy the results from their original reports.

As shown in Table 1, the proposed method significantly
outperforms the existing state‐of‐the‐art ground‐to‐aerial
cross‐view algorithms under the same network backbone
VGG16. In our approach, the network was trained with the
soft‐margin ranking loss and our designed GMS loss. CVM‐
Net [22] is a baseline network that only uses the basic soft‐
margin ranking loss for training. The LPN [39] method cal-
culates the category probability of each street view image to
obtain the geographic location, that is, images from different
viewpoints of the same location are classified into one cate-
gory. Regmi [28] exploited the conditional GANs to produce
the aerial‐view image from the ground‐level query. Besides, this
approach also used a soft‐margin ranking loss for cross‐view
image matching.

CVFT [26] aimed to transfer features from one domain to
another, which conducts more meaningful feature similarity
comparison. CVFT and our proposed method both want to
reduce the difficulty of network training from the perspective
of reducing the domain difference, but the CVFT reduces the
domain difference from the feature space while ours from the
image space. Since the domain information in the feature space
is obtained by down‐sampling, some detailed information will
be lost, thus aligning the domain information in the image
space can retain the detailed information of the original image
which is beneficial for boosting the network performance.
Orientation [23] tried to fuse the orientation information to
improve the network performance. Implicitly using the orien-
tation information requires the network to learn the mapping
from street view to aerial view, in contrast, our inverse polar

F I GURE 5 The illustration of two benchmark datasets. The top two
rows are the samples from CVUSA, and the bottom two rows are the
samples from CVACT. The left column is the aerial images, and the right
column is the corresponding ground‐level images
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transform can explicitly convert the street‐view image to aerial‐
view image, which is useful to alleviate the difficulty of network
learning.

4.4 | Ablation studies

We conduct the following ablation studies to test the impact of
different components of our method, the corresponding
experimental results are shown in Table 2. We show the retrieval
recall‐k accuracy for different versions of our full network.

Performance of Inverse Polar Transform (IPT). We use
the original street‐view images and the aerial‐view images as
input to train the baseline network. On the other side, the
baseline with IPT takes the synthetic aerial‐view images, which
are obtained by applying the inverse polar transform to street‐
view images, as the input. As shown in Table 2, applying the
inverse polar transform to street‐view images can improve the
top‐1 recall by 2.35% (81.39% vs. 79.04%), which means
roughly aligning the domain information of the two view im-
ages before extracting the description vector can effectively
reduce the difficulty of network learning. On the other side,
IPT causes a slight drop in the top‐1%. This is because the IPT
can lead the street‐view image to be distorted, while it is
difficult for the network to distinguish the images with large
distortion.

Performance of Multi‐scale Attention encoder
(MSAE). To evaluate the effectiveness of our MSAE mod-
ule, we remove the MSAE module from the final encoder
and constructs a plain fully connected network. Both the two
encoders are trained with soft margin ranking loss and our
GMS loss. As shown in Table 2, the performance is boosted
by over 5% (81.39% vs. 75.95%) when using our multi‐scale
attention module. To show the effect of the proposed multi‐
scale attention mechanism more intuitively, we visualise some
experimental heatmaps in Figure 6. As can be seen, despite
there are some confusing objects (such as the tree and car),
our method can still retrieve the correct reference image and
focus attention on stationary objects for example buildings
and roads. The results demonstrate that our MSAE module
is effective to alleviate the affect of object distortion caused
by inverse polar transform, and allow the network to focus

on stationary objects which are useful for distinguishing
cross‐view images. Although the scenes in the two‐view
images are shot at different time periods, the stationary
objects will not change for a long time period. This allows
our network to effectively combat changes in the image over
time.

Performance of global mining strategy (GMS). Hard
negative mining aims to put hard exemplars into a special set
and then train the model in a targeted manner. As shown in
Table 2, results reveal that the global mining strategy is able to
mine the global hard negative exemplars effectively, and im-
proves the performance by more than 2% (81.39% vs. 78.69%).
This is because when the network accuracy reaches to a high‐
level, the ordinary exemplars can be easily distinguished by
the network. At this time, it is impossible to train the ordinary
exemplars to improve the accuracy, and hard negative exem-
plars become obstacles which limit to further improve the
network accuracy. Consequently, using our global mining
strategy (GMS) to discover hard negative exemplars can
effectively allow the network to break through the bottleneck.
As show in Figure 7, the accuracy of the network without GMS
can hardly increase after the training for about 80 epochs, while
the network with our GMS can continue to learn the infor-
mation of difficult samples, so that the accuracy can increase
steadily. At the beginning of training, due to the hard exemplars
contain more nondiscriminatory information, it will bring great
obstacles to network training and resulting in low accuracy.

TABLE 1 Comparison with the state‐of‐
the‐arts on the CVUSA and CVACT_val
datasets

CVUSA CVACT_val

Method r@1 r@5 r@10 r@1% r@1 r@5 r@10 r@1%

CVM‐Net [22] 22.47 49.98 63.18 93.62 20.15 45 56.87 87.57

Orientation [23] 40.79 66.82 76.36 96.12 46.96 68.28 75.48 92.01

Regmi [28] 48.75 ‐ 81.27 95.98 ‐ ‐ ‐ ‐

CVFT [26] 61.43 84.69 90.94 99.02 61.05 81.33 86.52 95.93

LPN [39] 78.48 92.46 95.29 99.12 ‐ ‐ ‐ ‐

Ours 81.39 94.50 96.80 99.53 71.52 87.87 91.43 97.08

Note: R@K indicates top‐K retrieval rate. The bold value indicates that the method achieves the best performance with this
evaluation metric.

TABLE 2 Ablation study of different components of our proposed
model

CVUSA

Method r@1 r@5 r@10 r@1%

i. w/o IPT 79.04 93.75 96.47 99.59

ii. w/o MSAE 75.95 92.55 95.67 99.35

iii. w/o GMS 78.69 93.64 96.11 99.52

Ours 81.39 94.50 96.80 99.53

Note: The bold value indicates that the method achieves the best performance with this
evaluation metric.
Abbreviations: GMS, Global Mining Strategy; IPT, Inverse Polar Transform; MSAE,
Multi‐scale Attention Encoder.
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5 | IMPLEMENTATION DETAILS

t‐SNE visualization. Our network aims to learn good feature
embeddings which can bring matching image pairs closer while
push unmatching pairs far away. We use t‐SNE [54] to visualise
the image global description vector on a two‐dimensional
plane. As shown in Figure 8, the closer the images in the
two‐dimensional plane, the more similar their global descrip-
tion vectors are. It is also obvious from the three enlarged
windows that our model distinguishes images from different
areas very well. For example, the cluster of pictures in the
upper left corner can be seen from the scene information that

they are all taken from a road covered with more vegetation,
while the cluster of pictures in the lower right corner is
obviously taken from a desert area with less vegetation.

Sample localization results. To demonstrate the model's
ability to retrieve and match cross‐view images more intuitively,
we also show some localization examples in Figure 9. From left
to right are respectively the street‐view query image, and the
top 1‐5 retrieved aerial‐view images. It is obvious that the
spatial patterns of the top5 images are very similar, with only
the subtle difference between the distribution of buildings and
the vegetation cover, which demonstrates that our model pays
more attention to the unchanging spatial pattern.

F I GURE 6 Heatmaps generated by the
proposed MSAE module. The first column is the
original street‐view image, the second column is the
attention heatmap of the synthetic aerial‐view
image, and the third column is the attention
heatmap of the original aerial‐view image. The
closer the colour in the heatmaps is to red, the more
the model pays attention to the region. MSAE,
Multi‐scale Attention Encoder

F I GURE 7 Top‐1 recall accuracy curve of our
baseline w/ and w/o GMS on CVUSA. GMS,
Global Mining Strategy
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Training hyperparameters. We implement our network
in PyTorch using Adam optimiser. The momentum parameters
β1 and β2 are respectively set to 0.9 and 0.999, and the initial
learning rate is set to 1e‐4. We use StepLR scheduler to adjust
the learning rate, reduce the learning rate to one‐tenth every 80
epochs and train the model for 100 epochs. The resolution of
both the synthetic aerial‐view image and the original aerial‐
view image is 288 � 288. We augment the synthetic aerial‐
view images with random rotation. For the weighted soft‐
margin loss, we use the exhaustive mini‐batch strategy to
create the triplets within a batch. For the batch size B (we
choose B = 64), we average the triplet loss for all 2B(B‐1)
combinations of the positive and negative pairs.

6 | CONCLUSION

In this paper, we proposed an efficient method to solve the
problem of ground‐to‐aerial image geo‐localization. We exploit
three effective strategies that is the inverse polar transform

approach, the multi‐scale attention mechanism, and the global
hard mining scheme, to reduce the domain difference and
obtain more robust descriptor vectors. Specifically, the inverse
polar transform approach explicitly uses the geometric rela-
tionship between the street‐view image and aerial‐view image,
and can reduce the difficulty of the network learning by
roughly aligning the domain information between the two. The
multi‐scale attention mechanism is able to suppress the
deformed areas in the image and focuses more on the spatial
layout of the image, which can further enable the network to
understand the high‐level semantic information. Finally, with
the usage of our global mining scheme, the network can pay
more attention to hard negative exemplars to break through
the performance bottleneck. The state‐of‐the‐art experimental
results demonstrate the effectiveness of our proposed method.
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